Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
1.
Journal of Veterinary Science ; : 309-317, 2011.
Article in English | WPRIM | ID: wpr-17406

ABSTRACT

Conventional lung cancer therapies are associated with poor survival rates; therefore, new approaches such as gene therapy are required for treating cancer. Gene therapies for treating lung cancer patients can involve several approaches. Among these, aerosol gene delivery is a potentially more effective approach. In this study, Akt1 kinase-deficient (KD) and wild-type (WT) Akt1 were delivered to the lungs of CMV-LucR-cMyc-IRES-LucF dual reporter mice through a nose only inhalation system using glucosylated polyethylenimine and naphthalene was administrated to the mice via intraperitoneal injection. Aerosol delivery of Akt1 WT and naphthalene treatment increased protein levels of downstream substrates of Akt signaling pathway while aerosol delivery of Akt1 KD did not. Our results showed that naphthalene affected extracellular signal-regulated kinase (ERK) protein levels, ERK-related signaling, and induced Clara cell injury. However, Clara cell injury induced by naphthalene was considerably attenuated in mice exposed to Akt1 KD. Furthermore, a dual luciferase activity assay showed that aerosol delivery of Akt1 WT and naphthalene treatment enhanced cap-dependent protein translation, while reduced cap-dependent protein translation was observed after delivering Akt1 KD. These studies demonstrated that our aerosol delivery is compatible for in vivo gene delivery.


Subject(s)
Animals , Male , Mice , Administration, Inhalation , Aerosols , Gene Expression Regulation , Gene Knockdown Techniques , Genetic Therapy/methods , Gene Transfer Techniques , Genes, Reporter , Injections, Intraperitoneal , Luciferases/genetics , Lung Diseases/chemically induced , Mice, Transgenic , Naphthalenes/administration & dosage , Proto-Oncogene Proteins c-akt/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL